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Abstract

Modeling high-dimensional multivariate distributions is a
computationally challenging task. Bayesian networks have
been successfully used to reduce the complexity and sim-
plify the problem with discrete variables. However, it lacks
of a general model for continuous variables. In order to over-
come this problem, (Elidan 2010) proposed the model of cop-
ula bayesian networks that reparametrizes bayesian networks
with conditional copula functions. We propose a new learn-
ing algorithm for copula bayesian networks based on a PC
algorithm and a conditional independence test proposed by
(Bouezmarni, Rombouts, and Taamouti 2009). This test be-
ing non-parametric, no model assumptions are made allowing
it to be as general as possible. This algorithm is compared on
generated data with the score based method proposed by (El-
idan 2010). Not only it proves to be faster, but also it gener-
alizes well on data generated from distributions far from the
gaussian model.

1 Introduction
Modeling multivariate continuous distributions is an im-
portant task in statistics and machine learning with many
applications in science and engineering. However, high-
dimensional distributions are hard to manipulate and may
lead to intractable computations. In addition, apart from sim-
ple parametric models such as the gaussian distribution, uni-
variate distributions usually don’t have multivariate equiva-
lents leading to difficulties in building multivariate models.

Probabilistic graphical models are used to compactly rep-
resent multivariate distributions. In particular, bayesian net-
works (BN) use a directed acyclic graph (DAG) and a set
of conditional probability distributions (CPD) to encode the
distribution. This representation reduces the complexity by
taking advantage of conditional independencies, allowing
efficient inference and learning algorithms. However, BNs
lack of a general model for continuous variables: most of
the time, discretizations or gaussian models are used despite
no theoretical restrictions on CPD models. On the one hand,
discretizations need to be determined and are limited in the
number of bins that are used. Gaussian models on the other
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hand allow efficient inference and learning algorithms but
lack of expressiveness.

According to Sklar (theorem 1), any multivariate distribu-
tion is related to its univariate marginals by means of a cop-
ula function. Thus, the copula function allows to model the
dependence structure between continuous variables by rul-
ing out the marginal behavior of each variable. From a con-
structive perspective, this allows to dissociate the choice of
the marginals and the dependence structure. In practice how-
ever, copulas are limited to a few variables and constructing
and manipulating high-dimensional ones is difficult.

In order to take advantage of the two frameworks, many
graphical models for copula have been proposed such as
pair-copula construction (Czado 2010), Vine model (Bed-
ford, Cooke, and others 2002) or cumulative distribution net-
works (Huang 2009). One promising model is the Copula
Bayesian Network (CBN) (Elidan 2010) which parametrizes
a BN with a set of local conditional copula functions giving
it the same local properties as a classic one. Consequently,
this allows to use similar methods than in the classic case for
inference and learning. In this view, (Elidan 2010) proposed
a learning method based on the well known BIC score, max-
imized with a TABU search.

The main contribution of this paper is a new learning al-
gorithm for CBNs. This learning algorithm relies on a PC-
algorithm coupled with a continuous conditional indepen-
dence (CI) test proposed by (Bouezmarni, Rombouts, and
Taamouti 2009) and using Bernstein copula estimators. The
method is compared to the BIC score method in terms of
structural scores and time complexity on generated data sets.

The paper is organized as follows. In section 2 we de-
scribe copulas and some of their useful properties. Section 3
introduces the CBN framework proposed by (Elidan 2010).
Section 4 presents in details the two learning algorithms for
CBN, that is our algorithm and the method proposed in (El-
idan 2010). Section 5 compares the algorithms onto gener-
ated data from known structures and in terms of structure
learning and time complexity.

2 Copulas
Let R be the extended set of real numbers defined as R “

R Y t´8,`8u and I be the unit segment r0, 1s. Let X “



pX1, . . . , Xnq be an n-dimensional random vector and x “

px1, . . . , xnq a vector of Rn denoting a realization of X.

Definition 1 (Cumulative Distribution Function). The cu-
mulative distribution function (CDF) H : Rd Ñ I of a ran-
dom vector X is given by

Hpx1, . . . , xnq “ P pX1 ď x1, . . . , Xn ď xnq .

The CDF respects the following properties:

1. Hpx1, . . . , xnq “ 0 if there exists i such that xi “ ´8,
2. Hp`8, . . . ,`8q “ 1.

The 1-dimensional marginal distributions1 Fi, for each in-
dividual random variable Xi, are obtained by the formula
Fipxiq “ Hp`8, . . . , xi, . . . ,`8q.

When variables are independent, the joint distribution
can be expressed in terms of its univariate marginals:
Hpx1, . . . , xnq “

śn
i“1 Fipxiq. Thus, giving any set of ar-

bitrary marginal distributions Fi, a joint distribution can be
constructed by taking their product. Copula functions allow
to achieve the same goal but with dependent variables.

Definition 2 (Copula). Let U “ tU1, . . . , Unu be a random
vector whose components are uniformly distributed on I. A
copula function C : In Ñ I is a distribution:

Cpu1, . . . , unq “ PpU1 ď u1, . . . , Un ď unq

The relation between the joint distribution and its uni-
variate marginals is a central result of copula theory due
to (Sklar 1959):

Theorem 1 (Sklar 1959). Let H be any multivariate dis-
tribution function over a random vector X, there exists a
copula function C such that

H px1, . . . , xnq “ C pF1px1q, . . . , Fnpxnqq . (1)

Furthermore, if each Fipxiq is continuous then C is unique.

As the marginals encode the individual behavior of each
variables, the copula functionC encodes the dependence be-
tween these variables. From a constructive perspective this
is interesting since we can separate the choice of marginals
from the choice of the dependence structure. Moreover,
Sklar’s theorem may be used to construct new copulas from
known multivariate distributions by inverting2 (1) :

Cpu1, . . . , unq “ HpF´1
1 pu1q, . . . , F

´1
n punqq

where ui “ F pxiq. Taking H “ ΦR, the multivariate stan-
dard gaussian CDF with correlation matrixR , we obtain the
well known gaussian copula (Nelsen 2007) :

CGpu1, . . . , unq “ ΦRpφ
´1pu1q, . . . , φ

´1punqq

where φ is the univariate standard gaussian.

1When it is clear from context, the index i will be dropped in
order to alleviate notations.

2The univariate marginals may be not invertible and in this case
the inverse has to be replaced by the generalized inverse F˚ defined
as F˚

pyq “ inf tx|F pxq ě yu.

Copula functions are invariant under increasing transfor-
mations of the random variables. Indeed, let tψiu be a family
of such transformations and let Ui “ ψipXiq, then

H 1pu1, . . . , unq “ C 1pF 11pu1q, . . . , F
1
npunqq.

By definition of marginal distributions,

F 1i puiq “ PpUi ď uiq “ PpψipXiq ď uiq

“ PpXi ď ψ´1
i puiqq “ F pψ´1

i puiqq

and injecting it in the previous equation, it gives that

H 1pu1, . . . , unq “ PpU1 ď u1, . . . , Un ď unq

“ PpX1ď ψ´1
1 pu1q, . . . , Xn ď ψ´1

n punqq

“ Hpψ´1
1 pu1q, . . . , ψ

´1
n punqq

“ CpF1pψ
´1
1 pu1qq, . . . , Fnpψ

´1
n punqqq

“ CpF 11pu1q, . . . , F
1
npunqq

hence C 1 “ C. Using this last property with ψi “ Fi, we
have that H 1pu1, . . . , unq “ Cpu1, . . . , unq which allows to
work directly with the copula function and to look at the de-
pendence structure. However, in many applications the Fi’s
are usually unknown and rank variables Ri are used instead.
Given a database D of size M , the rank variable Rirms is
obtained as the rank of Xirms among the set of instances.

If a distribution function is continuous, its joint density is
obtained by deriving it : hpxq “ B

nHpx1,...,xnq

Bx1...Bxn
. A copula

density function can be equivalently defined by derivation
cpu1, . . . , unq “

B
nCpu1,...,unq

Bu1...Bxn
. Using Sklar’s theorem, the

joint density is then related to the copula density by:

hpx1, . . . , xnq “
BnHpx1, . . . , xnq

Bx1 . . . Bxn

“
BnCpF1px1q, . . . , Fnpxnqq

BF1px1q . . . BF pxnq

n
ź

i“1

BFipxiq

Bxi

“ c pF1px1q, . . . , Fnpxnqq
n
ź

i“1

fipxiq. (2)

This formula will be used extensively in the next section to
define CBNs.

3 Copula Bayesian Networks
A BN structure G is a DAG whose vertices X “

tX1, . . . , Xnu represent random variables. Let Pai be the
parents of Xi in G and NDi be the variables that are non-
descendants of Xi in the graph. A multivariate probability
distribution P over variables X, is said to factorize accord-
ing to G, if it can be expressed as the product

P pX1, . . . , Xnq “

n
ź

i“1

P pXi|Paiq. (3)

and G then encodes the set of independencies :

IpGq “ tpXi K NDi|Paiqu.

A BN is a pair B “ pG, P q where G is defined as previously
and P factorizes over G. To each node Xi of the BN struc-
ture is associated its corresponding CPD P pXi|Paiq that ap-
pears in the factorization of the joint distribution P .



In the discrete case, CPDs are most often represented via
conditional probability tables (CPT) while in the continuous
case, there are linear gaussian model (Lauritzen and Wer-
muth 1989) fpxi|paiq “ N pβi0 ` βTi pai;σ

2
i q. Although

gaussian distributions allow fast probabilistic computations
and estimation, they lack of expressiveness and some dis-
tributions, like rare events distributions, cannot be well ap-
proximated by such models. The CBN model introduced by
(Elidan 2010) address this problem by using copula func-
tions to parametrize the BN.

In order to do so, the first step is to use (2) in the Bayes
formula for fpxi|paiq:

fpxi|paiq “
fpxi,paiq

fppaiq

“
cpF pxiq, F ppai1q, . . . , F ppaikiqfpxiq

śki
j“1 fppaijq

BkiCp1,F ppai1q,...,F ppaiki
qq

BF ppai1q...BF ppaiki
q

śki
j“1 fppaijq

“
cpF pxiq, F ppai1q, . . . , F ppaikiqfpxiq

BkiCp1,F ppai1q,...,F ppaiki
qq

BF ppai1q...BF ppaiki
q

“ RcipF pxiq, F ppai1q, . . . , F ppaikiqqfpxiq

where ki “ |pai|. Consequently, if fpxq that is supposed to

be strictly positive, factorizes on G as fpxq “
n
ś

i“1

fpxi|paiq,

it is the same for the copula density :

cpF px1q, . . . , F pxnqq “
fpxq

śn
i“1 fpxiq

“

śn
i“1 fpxi|paiq
ś

i“1 fpxiq

“

śn
i“1RcipF pxiq, F ppa1q, . . . , F ppaKi

qqfpxiq
śn
i“1 fpxiq

“

n
ź

i“1

RcipF pxiq, F ppa1q, . . . , F ppaKi
qq.

Like with BNs, the converse is also true :
Theorem 2 (Elidan 2010). Let G be a DAG over X. In ad-
dition, let tcipF pxiq, F ppai1q, . . . , F ppaikiqqu be a set of
strictly positive copula densities associated with the nodes
of G that have at least one parent. If IpGq holds then the
function

hpF px1q, . . . , F pxnqq “
n
ź

i“1

RcipF pxiq, tF ppaikquqfpxiq,

is a valid density over X.
This leads to the definition of a CBN as given by (Elidan

2010) :
Definition 3 (Copula Bayesian Network). A Copula
Bayesian Network is a triplet C “ pG,ΘC ,Θf q that encodes
the joint density fpxq. ΘC is a set of local copula densities
functions ci pF pxiq, tF ppaikquq that are associated with the
nodes of G that have at least one parent. Θf is the set of pa-
rameters representing the marginal densities fpxiq. fpxq is
parametrized as

fpxq “
n
ź

i“1

RcipF pxiq, tF ppaikquqfpxiq. (4)

4 Learning
CBNs share the same local properties as the (classic) BNs
allowing to use similar algorithms in order to learn the
structure of a CBN. Those algorithms can be roughly di-
vided into two classes: score based methods and constrained
based methods. For score based method, the learning task is
viewed as a model selection and a scoring function is used
to measure how good the model fit the dataset. The space
of all DAG structures being superexponential, this score is
often maximized using local search methods such as hill-
climbing, gradient ascent, simulated annealing, TABU list,
etc. Constrained-based methods on the other hand look at
the graph as a set of (conditional) independences and use
CI tests, such as χ2 in the discrete case, to obtain informa-
tion about the underlying structure. We present one method
of each kind in this section and compare them in the next
section.

Score based method (CBIC)
In (Elidan 2010), a score-based method is used to learn the
structure of a CBN. The proposed score is the well-known
bayesian information criterion (BIC) (Schwarz 1978). Its ex-
pression on a CBN structure G is given by :

SBICpG : Dq “ `pD : θ̂,Gq ´ 1

2
logpMq|ΘG |,

where ` is the log-likelihood, θ̂ are the maximum likelihood
parameters estimators (MLE) and |ΘG | is the number of free
parameters associated with the graph structure. Using the
factorization of the joint density (4), we have :

`pD : Gq “
M
ÿ

m“1

N
ÿ

i“1

logRi puirms, πi1rmsq, . . . , πikirmsqq

where ui “ F pxiq and πij “ F ppaijq. (Elidan 2010) uses
several copula models to define the Rci ’s but we only re-
tain the most expressive one which is the gaussian copula
parametrized by a full correlation matrix Σ. Finding directly
the MLE for Σ may be difficult in high dimension and this
is why a proxy is used. This proxy relies on the relation
Σij “ sinpπ2 τijq between Kendall’s tau τij and correlation
matrix Σij that holds for every elliptical distribution (Lind-
skog, McNeil, and Schmock 2003). The τij are given by

τpXi, Xjq “ E
”

sign
´

pXi ´ X̃iqpXj ´ X̃j

¯ı

.

where pX̃i, X̃jq is an independent copy of pXi, Xjq. An es-
timator of Kendall’s tau is given by (Genest and Favre 2007)

τpXi, Xjq “
2

MpM ´ 1q
ˆ

M´1
ÿ

m1“1

M
ÿ

m2ąm1

sign
´

pXirm1s ´Xirm2sqˆ

pXjrm1s ´Xjrm2sq

¯

.

However, the matrix obtained by this process is not neces-
sarily a correlation matrix, that is a positive semi-definite



(PSD) matrix, and regularization techniques may be needed
to obtain one (Rousseeuw and Molenberghs 1993). Finally,
the BIC score is maximized using a TABU list algorithm
with random restarts (Glover and Laguna 1998).

Continuous PC algorithm (CPC)
The PC algorithm introduced by (Spirtes et al. 2000) and
on which relies our method can be divided in three main
steps : skeleton learning, v-structures search and constraint
propagation. The skeleton search consists in removing edges
from the complete non-oriented graph on X by using CI tests
between pairs of variables conditioned on subset of common
neighbors. Once this first step is completed, the triplets X ´
Y ´ Z such that X and Z are not neighbors and Y is not
in SepsetpX,Zq, are oriented as X Ñ Y Ð Z which we
call a v-structure. Finally, the remaining non-oriented edges
are oriented under the constraint that no new v-structures
are added into the graph unless it implies adding an oriented
cycle. For further details on the PC algorithm, see page 84
of (Spirtes et al. 2000).

The CI test, which is based on Hellinger’s distance, is
taken from (Bouezmarni, Rombouts, and Taamouti 2009;
2010) and (Su and White 2008). Taking two random vari-
ables X , Y and Z “ tZ1, . . . , Zdu a set of random vari-
ables; and with CX,Y,Z a copula and cX,Y,Z its density, the
article proposes to test:

X |ù Y |Z ðñ P
`

cXY |Z “ cX|Z ¨ cY |Z
˘

“ 1

The Hellinger’s distance is then used as a measure of the
conditional independence3:

HpY, Z|Xq “

ż

r0,1sd`2

˜

1´

d

cX,Zpx, zq ¨ cY,Zpy, zq

cX,Y,Zpx, y, zq ¨ cZpzq

¸2

ˆ cX,Y,Zpx, y, zqdxdydz (5)

From a database, it is possible to derive the non-
parametric Bernstein copula pCX,Y,Z (Sancetta and Satchell
2004) as an estimation of the copula CX,Y,Z. We can then
estimate the distance of Hellinger by:

pH “
1

M

M
ÿ

m“1

˜

1´

d

pcX,Zpxrms, zrmsq ¨ pcY,Zpyrms, zrmsq

pcX,Y,Zpxrms, yrms, zrmsq ¨ pcZpzrmsq

¸2

(6)
where the pxrms, yrms, zrmsq are the realizations of the

variables pX,Y,Zq in the database of M samples for the
copula C. Based on this estimation of the distance, (Bouez-
marni, Rombouts, and Taamouti 2009) proposes a statis-
tic BRT of CI test4 for any dimension of Z. Indeed, un-
der the assumption H0 : X |ù Y | Z, it can be proven that
BRT „ N p0, 1q.

3Some formulas like the equation 5 were a bit wrong in (Bouez-
marni, Rombouts, and Taamouti 2009; Wan and Zabaras 2014) and
have been fixed here.

4For the expression of BRT, we refer to theorem 1 of (Bouez-
marni, Rombouts, and Taamouti 2009).

Our contribution is a PC algorithm using a continuous CI
test relying on the BRT to learn CBNs. This method fol-
lows the same idea from the work of (Wan and Zabaras
2014) which proposes a learning procedure to factorize a
joint distribution and then learn a mixture of gaussians for
the CPDs. However, in the case of (Wan and Zabaras 2014),
the structure learning and parameter learning models being
different, this can lead to non-consistent results. In our case,
copulas are at the core of the model since they are used to
parametrize the CBN and using a copula based CI test makes
perfect sense.

5 Experimental Results
This section presents the results of the comparison between
CPC and CBIC methods5. The experiments have been car-
ried out with the C++ libraries aGrUM (Gonzales, Torti,
and Wuillemin 2017), which allows to build graphical mod-
els, and OpenTURNS (Baudin et al. 2015) which allows to
model continuous multivariate probabilistic distributions.

Simulation setup
The two algorithms have been tested on simulated data
from the Asia (Lauritzen and Spiegelhalter 1988) and
Alarm (Beinlich et al. 1989) networks. Asia is a relatively
small graph containing 8 nodes and 8 arcs while Alarm is
much bigger, containing 37 nodes and 46 arcs. In order to
obtain continuous data from these structures, a forward sam-
pling has been used to generate data from Gaussian, Student
and Dirichlet copulas. Those copulas are incorporated in the
local copulas appearing in the Rci coefficients of the CBN.

Skeleton performances
The structural performances of the two learning algorithms
have been computed by comparing the skeleton of the
learned graph with the one of the true structure that have
been used to generate the data. Precision (P) is the propor-
tion of learned edges that are actually in the true structure
while recall (R) is the proportion of edges that are in the
true structure that have been recovered. The F-score is then
defined as F “ 2PR{pP ` Rq. If the true skeleton has been
perfectly retrieved, the value of the F-score is 1. Figure 1
shows the results in terms of F-score for Asia and Alarm
network and both methods.

As can be seen, CBIC performs better on data generated
from gaussian and Student copulas since it needs less data
to recover the true structure. This is the expected behavior
since the gaussian assumption is true, or close to the true
model in these cases. However, it performs poorly with data
generated from Dirichlet copulas and cannot recover the true
structure. Although it needs more data to recover the true
structure, continuous PC performs well and equally on each
copula model, illustrating the strength of a non-parametric
method.

5While linear gaussian model is the standard when learning
BNs with continuous variables, we have not compared it to our
model since as it turns out to be less efficient than the CBIC method
(Elidan 2010)
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Figure 1: Evolution of the F-score for CPC and CBIC meth-
ods in function of the size of the dataset for gaussian (dashed
orange line), Student (dot-dashed orange line) and Dirich-
let (doted green line) distributions. The results are averaged
over 5 restarts in the case of Asia.

CPDAG performances
In order to score the oriented structure, structural hamming
distance (Colombo and Maathuis 2014) has been used. This
metric works on the completed partially directed acyclic
graphs (CPDAG) that represents the Markov class equiva-
lences of the DAG (Koller and Friedman 2009) and counts
the numbers of elementary operations that are needed to ob-
tain the true structure from the estimated one. Those trans-
formations are edge insertions, deletions and flipping. Figure
2 shows the results for Asia and Alarm network.

These results are similar from the ones of the skeleton.
Indeed, as can be seen, the CBIC method recovers almost
perfectly the CPDAG in the case of Gaussian and Student
copulas but does not in the case of Dirichlet copula. Contin-
uous PC, on the other hand, is less performing on recovering
the CPDAG but keeps the property to be indifferent to the
distribution model.

Time complexity
Time complexity has been tested for the two methods in
function of the dimension and of the size of the data set. To
do so, random graph of different sizes have been generated
with an MCMC method (Ide and Cozman 2002) and used to
generate data. Finally, the learning time on those data have
been measured for both method in function of the dimension
for different sizes of the data set. The results are shown on
figure 3.

As can be seen, the complexity in time for CBIC mainly
depends on the dimension. However, this complexity grows
more rapidly than CPC time complexity leading to in-
tractable computations for high dimensions such as Alarm
network. For this reason, figure 2d is restrained to the size
domain r100, 5000s.
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Figure 2: Evolution of the structural hamming distance for
CPC and CBIC methods in function of the size of the data
set for gaussian (dashed orange line), Student (dot-dashed
orange line) and Dirichlet (doted green line) distributions.
The results are averaged over 5 restarts for the case of Asia.
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Figure 3: Learning time for CPC (left) and CBIC (right)
methods with respect to dimension for several size of sam-
ples.

6 Conclusion and Future Work
CBN is a promising model for dealing with continuous data
in the BN framework and for dealing with high-dimensional
multivariate distributions from the copula perspective. One
of the strength of the model is that it allows to use tech-
niques similar to the classic BN case for inference and learn-
ing tasks. In this view, (Elidan 2010) proposed a score based
method using a continuous BIC score. In turn, we proposed
a constraint based method which uses a PC algorithm and
a non-parametric CI test, thus making no assumptions on
the model that generated the data on which the structure is
learned. Consequently this method is more general than the
CBIC method, since by essence it is restrained to parametric
models. The experimental part illustrated this property since
as we have seen, CPC can deal with data far from the gaus-
sian model such as Dirichlet. Moreover, even if the gaussian
copula model could have been changed, the true model is
rarely known in applications. In addition, the time complex-
ity of the local search grows exponentially making it difficult



to make computations for high dimension such as with the
Alarm network. The codes to manage and learn CBNs are
integrated in a still experimental plugin of openturns using
aGrUM (otagrum).

The provided method allowing us to remove the gaussian
hypothesis, it would be interesting to test it on application
cases. While the local search maximization of the CBIC is
quite slow, it could be interesting to try to decomposes the
score as in the discrete case (Koller and Friedman 2009).
This decomposition involves to study entropy and mutual
information in the continuous case which are not equiva-
lent to their discrete conterparts. Studying these quantities
in the light of copula theory would be interesting in order
to use method that are based on information theory such as
MIIC (Affeldt, Verny, and Isambert 2016).
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